On the Use of Three-Dimensional Self-Organizing Maps for Visualizing Clusters in Georeferenced Data

نویسندگان

  • Jorge M. L. Gorricha
  • Victor Sousa Lobo
چکیده

The Self-Organizing Map (SOM) is an artificial neural network that is very effective for clustering via visualization. Ideally, so as produce a good model, the output space dimension of the SOM should match the intrinsic dimension of the data. However, because it is very difficult or even impossible to visualize SOM’s with more than two dimensions, the vast majority of applications use SOM with a regular two-dimensional (2D) grid of nodes. For complex problems, this poses a limitation on the quality of the results obtained. There are no theoretical problems in generating SOMs with higher dimensional output spaces, but the 3D SOMs have met limited success. In this paper we show that the 3D SOM can be used successfully for visualizing clusters in georeferenced data. To overcome the problem of visualizing the 3D grid of units, we start by assigning one primary color (of the RGB color scheme) to each of the three dimensions of the 3D SOM. We then use those colors when representing, on a geographic map, the geo-referenced elements that are mapped to each SOM unit. We then provide a comparison of a 2D and 3D SOM for a concrete problem. The results obtained point to a significant increase in the clustering quality due to use of 3D SOMs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf

This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...

متن کامل

A SOM-view of oilfield data: A novel vector field visualization for Self-Organizing Maps and its applications in the petroleum industry

Self-Organizing Maps are a prominent tool for exploratory analysis and visualization of high-dimensional data. We propose a novel method for visualizing the cluster structure and coherent regions of the Self-Organizing Map that can be displayed as a vector field on top of the map lattice. Concepts of neighborhood and proximity on the map is exploited to obtain a representation where arrows poin...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

Improvements on the visualization of clusters in geo-referenced data using Self-Organizing Maps

The Self-Organizing Map (SOM) is an artificial neural network that performs simultaneously vector quantization and vector projection. Due to this characteristic, the SOM can be visualized through the output space, i.e. considering the vector projection perspective, and through the input data space, emphasizing the vector quantization process. Among all the strategies for visualizing the SOM, we...

متن کامل

K-Dynamical Self Organizing Maps

Neural maps are a very popular class of unsupervised neural networks that project high-dimensional data of the input space onto a neuron position in a low-dimensional output space grid. It is desirable that the projection effectively preserves the structure of the data. In this paper we present a hybrid model called K-Dynamical Self Organizing Maps (KDSOM ) consisting of K Self Organizing Maps ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011